Why Are CD8 T Cell Epitopes of Influenza A Virus Conserved?

Z.-R. Tiger Li^{1,2}, Veronika I. Zarnitsyna², Anice C. Lowen², Daniel Weissman^{1,3}, Katia Koelle¹, Jacob E. Kohlmeier², Rustom Antia¹ Department of Biology, ²Department of Microbiology and Immunology, ³Department of Physics, Emory University, Atlanta, Georgia.

Introduction

Evidences of the conservation

- The internal proteins have lower nonsynonymous mutation rates than the surface proteins.
- Within NP and M1, the CD8 T cell epitope region has less sites of *dN/dS* > 1 than nonepitope region.
- Heterosubtypic infection is cross-protected by preexisting CD8 T cells in mice and human.

Hypotheses

- 1. Fitness cost constrains the nonsynonymous mutation.
- 2. Escape from CD8 T cells brings small selective advantage since CD8 T cells mainly contribute to controlling pathology.
- 3. MHC polymorphism limits the selective advantage in a fraction of population.

References

Liang et al. *J Immuol* (1994); Bhatt et al. *Mol Biol Evol* (2011); Sridhar et al. *Nat Med* (2013); Quiñones-Parra et al. *PNAS* (2014); Mechkovech et al. *J Virol* (2015);

Halloran et al. "Design and Analysis of Vaccine Studies" (2010)

Population Genetics Model

Epidemiological Model

Escaping mechanisms

- 1. Mutation abrogates peptide-MHC binding.
- 2. Conformation change prevents TCR recognition. Compensatory immunity may be induced by the MT infection and decreases the selective advantage.

Conclusion

- 1. Small selective advantage and MHC polymorphism can account for the low invasion rate of CD8 T cell-escaping mutations, even if fitness cost is absent.
- 2. Compensatory immunity against mutant may further keep the invasion transient.